Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 199: 105772, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458665

RESUMO

Phagocytosis "offense" is a crucial process to protect the organism from diseases and the effects of foreign particles. Insects rely on the innate immune system and thus any hindrance to phagocytosis may greatly affect their resistance to diseases and response to pathogens. The European honeybee, a valuable species due to its economic and environmental contribution, is being challenged by colony collapse disorder leading to its decline. Exposure to multiple factors including pesticides like imidacloprid and amitraz may negatively alter their immune response and ultimately make them more susceptible to diseases. In this study, we compare the effect of different concentrations and mixtures of imidacloprid and amitraz with different concentrations of the immune stimulant, zymosan A. Results show that imidacloprid and amitraz have a synergistic negative effect on phagocytosis. The lowered phagocytosis induces significantly higher hemocyte viability suggesting a negatively correlated protective mechanism "defense" from pesticide-associated damage but may not be protective from pathogens.


Assuntos
Hemócitos , Neonicotinoides , Nitrocompostos , Praguicidas , Toluidinas , Abelhas , Animais , Imunidade Inata , Fagocitose , Praguicidas/toxicidade
2.
Chemosphere ; 340: 139833, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595688

RESUMO

Brownfields are a widespread problem in the world. The poor quality of these soils and the potential presence of contaminants can pose a significant threat to plant establishment and growth. However, it may be possible to improve their establishment with an appropriate agricultural practice. In this paper, the effects of two common planting strategies, seeding and transplanting, on the establishment and growth of the hyperaccumulator species Noccaea caerulescens and on its phytoextraction capacity were investigated. A field experiment was conducted by direct sowing of N. caerulescens seeds on a plot of contaminated Technosols in Jeandelaincourt, France. At the same time, seeds were sown on potting soil under controlled conditions. One month later, the seedlings were transplanted to the field. One year later, the results showed that transplanting improved the establishment and growth of N. caerulescens. This was due to a decrease in soil pH in the rhizosphere, which subsequently increased nutrient availability. This change in rhizosphere properties also appeared to be the key that improved microbial activities in the rhizosphere soil of transplanted plants. The observed improvement in both rhizosphere nutrient availability and microbial activities, in turn, increased auxin concentrations in the rhizosphere and consequently a more developed root system was observed in the transplanted plants. Furthermore, the Cd and Zn phytoextraction yield of transplanted plants is 2.5 and 5 times higher, respectively, than that of sown plants. In conclusion, N. caerulescens transplantation on contaminated sites seems to be an adequate strategy to improve plant growth and enhance trace metal phytoextraction.


Assuntos
Rizosfera , Oligoelementos , Sementes , Plântula , Fertilidade , Solo
3.
Insects ; 14(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36835742

RESUMO

Invertebrates have a diverse immune system that responds differently to stressors such as pesticides and pathogens, which leads to different degrees of susceptibility. Honeybees are facing a phenomenon called colony collapse disorder which is attributed to several factors including pesticides and pathogens. We applied an in vitro approach to assess the response of immune-activated hemocytes from Apis mellifera, Drosophila melanogaster and Mamestra brassicae after exposure to imidacloprid and amitraz. Hemocytes were exposed to the pesticides in single and co-exposures using zymosan A for immune activation. We measured the effect of these exposures on cell viability, nitric oxide (NO) production from 15 to 120 min and on extracellular hydrogen peroxide (H2O2) production after 3 h to assess potential alterations in the oxidative response. Our results indicate that NO and H2O2 production is more altered in honeybee hemocytes compared to D. melanogaster and M. brassicae cell lines. There is also a differential production at different time points after pesticide exposure between these insect species as contrasting effects were evident with the oxidative responses in hemocytes. The results imply that imidacloprid and amitraz act differently on the immune response among insect orders and may render honeybee colonies more susceptible to infection and pests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...